97. 交错字符串
给定三个字符串 s1、s2、s3,请你帮忙验证 s3 是否是由 s1 和 s2 交错 组成的。
两个字符串 s 和 t 交错 的定义与过程如下,其中每个字符串都会被分割成若干 非空 子字符串:
s = s1 + s2 + ... + sn
t = t1 + t2 + ... + tm
|n - m| <= 1
交错 是 s1 + t1 + s2 + t2 + s3 + t3 + ... 或者 t1 + s1 + t2 + s2 + t3 + s3 + ...
# 提示:a + b 意味着字符串 a 和 b 连接。
示例 1:
输入:s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
输出:true
示例 2:
输入:s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
输出:false
示例 3:
输入:s1 = "", s2 = "", s3 = ""
输出:true
提示:
0 <= s1.length, s2.length <= 100
0 <= s3.length <= 200
s1、s2、和 s3 都由小写英文字母组成
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/interleaving-string
Link:https://leetcode.com/problems/interleaving-string/
递归 + 记忆化搜索
我其实一直在纠结如何满足|n - m| <= 1
条件, 但其实,两个字符串互相拼接,就自然满足条件。
这道题,挺难的,虽然2018年做了一遍,但是完全没有印象
[1,2,3,4]
=>
[1 + 2 + 3 + 4] # abs(4 - 3) <= 1
[+ 1 + 2 + 3 + 4] # abs(4 - 4) <= 1
[+ 1 + 2 + 3 + 4 +] # abs(4 - 5) <= 1
例如想把上述链接起来,那么另一个要把每个元素都连接起来,
i, j分别代表已经有那些字母投入匹配了
from functools import lru_cache
class Solution:
def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
if len(s1) + len(s2) != len(s3):
return False
return self.helper(s1, 0, s2, 0, s3, '')
@lru_cache(maxsize=None)
def helper(self, s1: str, i: int, s2: str, j, s3: str, match: str) -> bool:
if i == len(s1) and j == len(s2) and match == s3:
return True
if i < len(s1) and s1[i] == s3[i + j]:
if self.helper(s1, i + 1, s2, j, s3, match + s1[i]):
return True
if j < len(s2) and s2[j] == s3[i + j]:
if self.helper(s1, i, s2, j + 1, s3, match + s2[j]):
return True
return False
动态规划
状态定义
dp[i][j]定义s1的前i个字符 + s2的前j个字符和s3的前(i + j)匹配情况
状态转移
"-----" + "s1[i - 1]"
i - 1 1
"-----------"
j
"-----" + "-----------" + "s3[i + j - 1]"
i - 1 j 1
# 如果s1[i - 1] == s3[i + j - 1] 并且 dp[i - 1][j]
dp[i][j] = True
"-----"
i
"-----------" + "s2[j - 1]"
j - 1 1
"-----" + "-----------" + "s3[i + j - 1]"
i j - 1 1
# 如果s2[j] == s3[i + j - 1] 并且 dp[i][j - 1]
dp[i][j] = True
初始条件
dp[0][0] = 0, s1前0个字符+s2前0个字符与s3前(0 + 0)个字符相匹配
计算方向
矩阵由左上到右下
class Solution:
def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
m = len(s1)
n = len(s2)
if m + n != len(s3):
return False
dp = [[False for j in range(n + 1)] for i in range(m + 1)]
for i in range(m + 1):
for j in range(n + 1):
if i == 0 and j == 0:
dp[0][0] = True
continue
if i > 0 and s1[i - 1] == s3[i + j - 1] and dp[i - 1][j]:
dp[i][j] = True
if j > 0 and s2[j - 1] == s3[i + j - 1] and dp[i][j - 1]:
dp[i][j] = True
return dp[-1][-1]
–End–